TECHNICAL DATA SHEET

Fluorescent Imaging Reagent

AF647-RIS

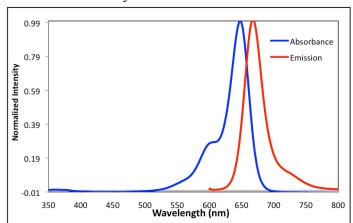
Catalogue Number: BV500101

* For Laboratory Use. A product for research purposes only, not for human use.

DESCRIPTION: AF647-RIS is a fluorescent bisphosphonate imaging reagent, which can be used for both *in vitro* and *in vivo* studies.

CONTENTS: Each vial contains 24 nmol of *AF647-RIS* in lyophilized dry solid form (4 nmol is extra amount added to compensate for the potential compound retaining in syringes and needles during injection). The reagent can be reconstituted with aqueous buffers (calcium/magnesium free PBS buffer, 0.9% NaCl solution, or many other buffers of the customers' choice with near neutral pH).

Table 1. Properties of AF647-RIS


Parameter	Value
M.W.	1198 g/mol
Abs Max ¹	648 nm
Em Max ¹	666 nm
Extinction Coefficient ²	240,000 M ⁻¹ cm ⁻¹
Purity ³	> 98 %
Appearance	Blue solid

 1 UV-VIS absorption and fluorescence emission were measured in 0.1 M phosphonate buffer, pH 7.0. The maximum wavelengths shown above have ± 1 nm instrumentation error.

PROPERTIES: The physical properties of AF647-RIS can be found in **Table 1** and **Figure 1**.

STORAGE & HANDLING:

- Upon receipt, AF647-RIS should be **stored at \leq -20** °C **and protected from light**. When stored and handled properly, AF647-RIS is stable for at least 18 months in dry solid form.
- Before opening the vial, check to ensure that all compounds are at the bottom of the vial.
- After reconstituting with aqueous buffers, gently swirl the solution to ensure that the solid is fully dissolved in solution.
- Once reconstituted with aqueous buffers, it is highly recommended to aliquot the solutions for longer-term use, and the aliquots should be stored at 4 °C or -20 °C and protected from light.

Figure 1. Absorbance and emission spectra of *AF647-RIS*, in 0.1 M phosphate buffer, pH 7.0

²The extinction coefficient for *AF647-RIS* is assumed the same as Alexa Fluor 647.

³Purity is determined by reverse phase HPLC, ¹H NMR, and ³¹P NMR spectroscopy.

IMAGING APPLICATIONS:

- *AF647-RIS* and similar reagents were previously applied in mice, rats and rabbits studies at doses of approximately 50-100 nmol/Kg, which could be a starting point for use in other animal models.
- We also have experience using sequential fluorescent reagents, as well as multiple fluorescent reagents in a single administration; and we would be happy to provide technical advice/support if needed. Please send your technical questions to inquiry@biovinc.com.

SELECTED REFERENCES:

- Kashemirov, B.A.; Bala, J.L.F.; Chen, X.; Ebetino, F.H.; Xia, Z.; Russell, R.G.G.; Coxon, F.P.; Roelofs, A.J.; Rogers, M.J.; McKenna, C.E. <u>Fluorescently Labeled Risedronate and Related Analogues: "Magic Linker" Synthesis.</u> 2008, *Bioconjugate Chemistry*, 19(12): 2308-2310.
- Roelofs, A.J.; Coxon, F.P.; Ebetino, F.H.; Lundy, M.W.; Henneman, Z.J.; Nancollas, G.H.; Sun, S.; Blazewska, K.M.; Bala, J.L.F.; Kashemirov, B.A.; Khalid, A.B.; McKenna, C.E.; Rogers, M.J. Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. 2010, Journal of Bone and Mineral Research, 25(3): 606-616.
- Roelofs, A.J.; Stewart, C.A.; Sun, S.; Blazewska, K.M.; Kashemirov, B.A.; McKenna C.E.; Russell, R.G.G.; Rogers, M.J., Lundy, M.W.; Ebetino F.H.; Coxon, F.P. <u>Analysing the skeletal distribution of fluorescently-labelled bisphosphonates and lower affinity analogues in vivo</u>. 2012 *Journal of Bone and Mineral Res.* 27(4): 835-847.
- Turek, J.; Ebetino, F. H.; Lundy, M.W.; Sun, S.; Kashemirov, B.A.; McKenna, C.E.; Gallant, M.A.;
 Plotkin, L.I.; Bellido, T.; Duan, X.; Triffitt, J.T.; Russell, R.G.G.; Burr, D.B.; Allen, M.R.
 Bisphosphonate Binding Affinity Affects Drug Distribution in Both Intracortical and Trabecular Bone of Rabbits.
 2012, Calcified Tissue International, 90(3): 202-210
- Hogoku, A.; Sun, S.; Park, S.; McKenna, C.E.; Nishimura, I. <u>Equilibrium-dependant bisphosphonate interaction with crystalline bone mineral explains anti-resorptive pharmacokinetics and prevalenc of osteonecrosis of the jaw in rats.</u> 2013 Bone 53:59-68.
- Vermeer, J.A.; Jansen, I.D.; Marthi, M.; Coxon, F.P.; McKenna, C.E.; Sun, S.; de Vries, T.J.; Everts, V. <u>Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors</u>. 2013 *Bone*. 57(1):242-251.

NOTES TO CUSTOMERS:

- BioVinc's fluorescent imaging reagents are offered for research purposes only, and are not intended for human use.
- The purchase of this product conveys to the buyer the limited, non-transferable right to use the purchased amount of the product and the components of the product in research conducted by the buyer. BioVinc's products are not available for resale or other commercial uses without a specific agreement from BioVinc LLC.

^{*}For more references, please visit www.biovinc.com/references.