Bone Targeted Therapeutics:
- Ren Y, Weeks J, Xue T, Rainbolt J, de Mesy Bentley KL, Shu Y, et al. Evidence of bisphosphonate-conjugated sitafloxacin eradication of established methicillin-resistant S. aureus infection with osseointegration in murine models of implant-associated osteomyelitis. Bone Res. 2023;11(1):51.
- Sedghizadeh PP, Cherian P, Roshandel S, Tjokro N, Chen C, Junka AF, et al. Real-Time Impedance-Based Monitoring of the Growth and Inhibition of Osteomyelitis Biofilm Pathogen Staphylococcus aureus Treated with Novel Bisphosphonate-Fluoroquinolone Antimicrobial Conjugates. Int J Mol Sci. 2023;24(3).
- Ren Y, Xue T, Rainbolt J, Bentley KLM, Galloway CA, Liu Y, et al. Efficacy of Bisphosphonate-Conjugated Sitafloxacin in a Murine Model of S. aureus Osteomyelitis: Evidence of “Target & Release” Kinetics and Killing of Bacteria Within Canaliculi. Front Cell Infect Microbiol. 2022;12:910970.
- Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, et al. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone. 2022;156:116289.
- Tao J, Srinivasan V, Yi X, Zhao Y, Zhang H, Lin X, et al. Bone-Targeted Bortezomib Inhibits Bortezomib-Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone. J Bone Miner Res. 2022;37(4):629-42.
- Sun S, Tao J, Sedghizadeh PP, Cherian P, Junka AF, Sodagar E, et al. Bisphosphonates for delivering drugs to bone. Br J Pharmacol. 2021;178(9):2008-25.
- Adjei-Sowah E, Peng Y, Weeks J, Jonason JH, de Mesy Bentley KL, Masters E, et al. Development of Bisphosphonate-Conjugated Antibiotics to Overcome Pharmacodynamic Limitations of Local Therapy: Initial Results with Carbamate Linked Sitafloxacin and Tedizolid. Antibiotics (Basel). 2021;10(6).
- Wang H, Xiao L, Tao J, Srinivasan V, Boyce BF, Ebetino FH, et al. Synthesis of a Bone-Targeted Bortezomib with In Vivo Anti-Myeloma Effects in Mice. Pharmaceutics. 2018;10(3).
- Sedghizadeh PP, Sun S, Junka AF, Richard E, Sadrerafi K, Mahabady S, et al. Design, Synthesis, and Antimicrobial Evaluation of a Novel Bone-Targeting Bisphosphonate-Ciprofloxacin Conjugate for the Treatment of Osteomyelitis Biofilms. J Med Chem. 2017;60(6):2326-43.
Fluorescent BPs:
- Okawa H, Kondo T, Hokugo A, Cherian P, Sundberg O, Campagna JJ, et al. Fluorescent risedronate analogue 800CW-pRIS improves tooth extraction-associated abnormal wound healing in zoledronate-treated mice. Commun Med (Lond). 2022;2:112.
- McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184(5):1330-47 e13.
- Hokugo A, Kanayama K, Sun S, Morinaga K, Sun Y, Wu Q, et al. Rescue bisphosphonate treatment of alveolar bone improves extraction socket healing and reduces osteonecrosis in zoledronate-treated mice. Bone. 2019;123:115-28.
- Cohn Yakubovich D, Eliav U, Yalon E, Schary Y, Sheyn D, Cook-Wiens G, et al. Teriparatide attenuates scarring around murine cranial bone allograft via modulation of angiogenesis. Bone. 2017;97:192-200.
- Fluorescent bisphosphonate and carboxyphosphonate probes: a versatile toolkit for applications in bone biology and biomedicine. Sun S., Blazewska K. M., Kadina A. P., Kashemirov B. A., Duan X. C., Triffitt J. T., Dunford J. E., Russell R. G. G., Ebetino F. H., Roelofs A. J., Coxon F. P., Lundy M. W., McKenna, C. E. (2015) Bioconjug. Chem. Dec 8. [Epub ahead of print]. DOI: 10.1021/acs.bioconjchem.5b00369
- Real-Time Intravital Imaging Establishes Tumor-Associated Macrophages as the Extraskeletal Target of Bisphosphonate Action in Cancer. Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, McKenna CE, Croucher PI, Swarbrick A, Weilbaecher K, Phan TG, Rogers MJ. Cancer discovery. 2015; 5(1): 35-42.
- Endocytotic Uptake of Zoledronic Acid by Tubular Cells May Explain Its Renal Effects in Cancer Patients Receiving High Doses of the Compound. Verhulst A, Sun S, McKenna CE, D’Haese PC. Plos ONE. 2015; 10(3): e0121861.
- Bisphosphonate-induced differential modulation of immune cell function in gingiva and bone marrow in vivo: Role in osteoclast-mediated NK cell activation. Tseng HC, Kanayama K, Kaur K, Park SH, Park S, Kozlowska A, Sun S, McKenna CE, Nishimura I, Jewett A. Oncotarget, 2015; 6(24): 20002-20025.
- Development of osteomucosal tissue constructs in vitro and bisphosphonate localization. Bae S., Sun S., Aghaloo T., Oh JE, McKenna CE, Kang MK, Shin KH, Tetradis S, Park NH, Kim RH., International Journal of Molecular Medicine. 2014;34(2):559-563.
- Bisphosphonate Uptake in Areas of Tooth Extraction or Periapical Disease. Cheong S, Sun S, Kang B, Bezouglaia O, Elashoff D, McKenna CE, Aghaloo TL, Tetradis S. Journal of Oral and Maxillofacial Surgery. 2014;72(12):2461-2468.
- Equilibrium-dependant bisphosphonate interaction with crystalline bone mineral explains anti-resorptive pharmacokinetics and prevalenc of osteonecrosis oft he jaw in rats. Hogoku, A, Sun, S, Park, S, McKenna, CE, Nishimura, I. 2013 Bone 53:59-68.
- Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors. Vermeer JA, Jansen ID, Marthi M, Coxon FP, McKenna CE, Sun S, de Vries TJ, Everts V. Bone. 2013 Nov;57(1):242-51.
- Bisphosphonate Binding Affinity Affects Drug Distribution in Both Intracortical and Trabecular Bone of Rabbits. Turek, John; Ebetino, F. Hal; Lundy, Mark W.; Sun, Shuting; Kashemirov, Boris A.; McKenna, Charles E.; Gallant, Maxime A.; Plotkin, Lilian I.; Bellido, Teresita; Duan, Xuchen; Triffitt, James T.; Russell, R. Graham G.; Burr, David B.; Allen, Matthew R. 2012, Calcified Tissue International, 90(3): 202-210
- Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo. Roelofs, A. J., Stewart, C. A., Sun, S., Blazewska, K. M., Kashemirov, B. A., McKenna, C. E., Russell, R. G. G., Rogers, M. J., Lundy, M. W., Ebetino, F. H., Coxon, F. P. 2012 Journal of Bone and Mineral Res. 27(4): 835-847.
- Synthesis and Characterization of Novel Fluorescent Nitrogen-Containing Bisphosphonate Imaging Probes for Bone Active Drugs. Sun, Shuting; Blazewska, Katarzyna M.; Kashemirov, Boris A.; Roelofs, Anke J.; Coxon, Fraser P.; Rogers, Michael J.; Ebetino, Frank H; McKenna, Michael J.; McKenna, Charles E. 2011, Phosphorus, Sulfur and Silicon and the Related Elements, 186(4):970-971.
- Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. Roelofs, Anke J.; Coxon, Fraser P.; Ebetino, Frank H.; Lundy, Mark W.; Henneman, Zachary J.; Nancollas, George H.; Sun, Shuting; Blazewska, Katarzyna M.; Bala, Joy Lynn F.; Kashemirov, Boris A.; Khalid, Aysha B.; McKenna, Charles E.; Rogers, Michael J. 2010, Journal of Bone and Mineral Research, 25(3): 606-616.
- Near-Infrared Fluorescent Probe Traces Bisphosphonate Delivery and Retention in vivo. Kozloff, K. M., Volakis, L. I., Marini, J. C., Caird, M. S. 2010 Journal of Bone and Mineral Research, 25(8): 1748-1758.
- Synthesis of drug conjugates through epoxide containing linkers. U.S. Pat. Appl. Publ. McKenna, Charles E.; Kashemirov, Boris A.; Bala, Joy Lynn F. 2008, US 20080312440 A1 20081218
- Fluorescently Labeled Risedronate and Related Analogues: “Magic Linker” Synthesis. Kashemirov, B. A.; Bala, J. L. F.; Chen, X.; Ebetino, F. H.; Xia, Z.; Russell, R. G. G.; Coxon, F. P.; Roelofs, A. J.; Rogers, M. J.; McKenna, C. E. 2008, Bioconjugate Chemistry, 19(12): 2308-2310.
General Mechanism of Bisphosphonates:
- Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, et al. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone. 2022;156:116289.
- “Antiresorptives” — The Duration and Safety of Osteoporosis Treatment: Anabolic and Antiresorptive Therapy. Russell R. G. G., Tsoumpra M. K., Lawson M., Chantry A. D., Ebetino F. H., Pazianas M. Editors: Stuart Silverman and Bo Abrahamsen. Chapter 2. pp. 17-36. Springer Publishers. 2016. In press ISBN: 978-3-319-23638-4 (Print) 978-3-319-23639-1 (Online)
- The Relationship Between the Chemistry and Biological Activity of the Bisphosphonates. Ebetino, F. H., Hogan, A. M., Sun, S., Tsoumpra, M. K., Duan, X., Triffitt, J. T., Kwaasi, A. A., Dunford, J. E., Barnett, B. L., Oppermann, U., Lundy, M. W., Boyde, A., Kashemirov, B. A., McKenna, C. E., Russell, R. G. G. 2011, Bone, 49(1):20-33.
- Bisphosphonates: The first 40 years. Russell, R. G. G. 2011, Bone, 49(1):2-19
- Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Roelofs, A. J.; Thompson, K.; Ebetino, F. H.; Rogers, M. J.; Coxon, F. P. 2010, Current Pharmaceutical Design, 16(27): 2950-2960.
- Mechanisms of Action of Bisphosphonates: Similarities and Differences and Their Potential Influence on Clinical Efficacy. Russell, R. G. G., Watts, N. B., Rogers, M. L., Ebetino, F. H. 2008, Osteoporosis International, 19(6): 733-759
- Bisphosphonate Hydroxyapatite Interactions: Differential Properties Important in Their Mechanism of Action on Bone. Nancollas, G., Tang, R., Henneman, Z. J., Phipps, R. J., Gulde, S., Wu, W., Mangood, A., Russell, R. G. G., Ebetino, F. H. 2006, Bone, 38(5): 617-627.
- The Molecular Mechanism of Nitrogen-Containing Bisphosphonates as Anti-Osteoporosis Drugs: crystal structure and inhibition of human farnesyl pyrophosphate Synthase. Kavanagh, K. L., Guo, K., Dunford, J. E., Wu, X., Knapp, S., Ebetino, F. H., Rogers, M. J., Russell, R. G. G., and Oppermann, U. 2006 PNAS, 103(20):7829-7834.